G = C3×C22⋊S4 order 288 = 25·32
direct product, non-abelian, soluble, monomial
Aliases:
C3×C22⋊S4,
(C2×C6)⋊1S4,
C22⋊(C3×S4),
C22⋊A4⋊4C6,
(C23×C6)⋊3S3,
C24⋊5(C3×S3),
(C3×C22⋊A4)⋊2C2,
SmallGroup(288,1035)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C22⋊S4
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f3=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, fcf-1=bc=cb, bd=db, be=eb, fbf-1=gbg=c, cd=dc, ce=ec, gcg=b, fdf-1=gdg=de=ed, fef-1=d, eg=ge, gfg=f-1 >
Subgroups: 574 in 119 conjugacy classes, 14 normal (8 characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, C6, C2×C4, D4, C23, C32, C12, A4, C2×C6, C2×C6, C22⋊C4, C2×D4, C24, C3×S3, C2×C12, C3×D4, S4, C22×C6, C22≀C2, C3×A4, C3×C22⋊C4, C6×D4, C22⋊A4, C22⋊A4, C23×C6, C3×S4, C3×C22≀C2, C22⋊S4, C3×C22⋊A4, C3×C22⋊S4
Quotients: C1, C2, C3, S3, C6, C3×S3, S4, C3×S4, C22⋊S4, C3×C22⋊S4
Character table of C3×C22⋊S4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 3 | 3 | 3 | 6 | 12 | 1 | 1 | 32 | 32 | 32 | 12 | 12 | 12 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ7 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 2 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1-√-3 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1+√-3 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ10 | 3 | -1 | -1 | 3 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -1 | 3 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from S4 |
ρ11 | 3 | -1 | 3 | -1 | -1 | 1 | 3 | 3 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | -1 | -1 | 3 | -1 | 3 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | orthogonal lifted from S4 |
ρ12 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | -1 | 1 | 1 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | orthogonal lifted from S4 |
ρ13 | 3 | -1 | -1 | 3 | -1 | 1 | 3 | 3 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | -1 | 3 | -1 | 3 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from S4 |
ρ14 | 3 | -1 | 3 | -1 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | -1 | 3 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | orthogonal lifted from S4 |
ρ15 | 3 | 3 | -1 | -1 | -1 | 1 | 3 | 3 | 0 | 0 | 0 | 1 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | orthogonal lifted from S4 |
ρ16 | 3 | -1 | -1 | 3 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | 1 | -1 | ζ6 | ζ65 | -3-3√-3/2 | ζ6 | -3+3√-3/2 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | ζ6 | ζ6 | ζ32 | ζ3 | ζ65 | ζ65 | complex lifted from C3×S4 |
ρ17 | 3 | -1 | 3 | -1 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | -1 | 1 | ζ65 | ζ6 | ζ65 | -3+3√-3/2 | ζ6 | -3-3√-3/2 | ζ6 | ζ65 | ζ3 | ζ32 | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | ζ6 | complex lifted from C3×S4 |
ρ18 | 3 | 3 | -1 | -1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | ζ6 | ζ32 | ζ3 | ζ3 | ζ65 | complex lifted from C3×S4 |
ρ19 | 3 | 3 | -1 | -1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | ζ65 | ζ3 | ζ32 | ζ32 | ζ6 | complex lifted from C3×S4 |
ρ20 | 3 | 3 | -1 | -1 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | ζ65 | ζ3 | ζ65 | ζ6 | ζ6 | ζ32 | complex lifted from C3×S4 |
ρ21 | 3 | 3 | -1 | -1 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | ζ6 | ζ32 | ζ6 | ζ65 | ζ65 | ζ3 | complex lifted from C3×S4 |
ρ22 | 3 | -1 | -1 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1 | -1 | 1 | ζ6 | ζ65 | -3-3√-3/2 | ζ6 | -3+3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | ζ32 | ζ6 | ζ65 | ζ3 | ζ3 | complex lifted from C3×S4 |
ρ23 | 3 | -1 | 3 | -1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1 | 1 | -1 | ζ65 | ζ6 | ζ65 | -3+3√-3/2 | ζ6 | -3-3√-3/2 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | ζ3 | ζ3 | ζ32 | ζ6 | ζ32 | complex lifted from C3×S4 |
ρ24 | 3 | -1 | 3 | -1 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | -1 | 1 | ζ6 | ζ65 | ζ6 | -3-3√-3/2 | ζ65 | -3+3√-3/2 | ζ65 | ζ6 | ζ32 | ζ3 | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | ζ65 | complex lifted from C3×S4 |
ρ25 | 3 | -1 | 3 | -1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1 | 1 | -1 | ζ6 | ζ65 | ζ6 | -3-3√-3/2 | ζ65 | -3+3√-3/2 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | ζ32 | ζ32 | ζ3 | ζ65 | ζ3 | complex lifted from C3×S4 |
ρ26 | 3 | -1 | -1 | 3 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | 1 | -1 | ζ65 | ζ6 | -3+3√-3/2 | ζ65 | -3-3√-3/2 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | ζ65 | ζ65 | ζ3 | ζ32 | ζ6 | ζ6 | complex lifted from C3×S4 |
ρ27 | 3 | -1 | -1 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1 | -1 | 1 | ζ65 | ζ6 | -3+3√-3/2 | ζ65 | -3-3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | ζ3 | ζ65 | ζ6 | ζ32 | ζ32 | complex lifted from C3×S4 |
ρ28 | 6 | -2 | -2 | -2 | 2 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C22⋊S4 |
ρ29 | 6 | -2 | -2 | -2 | 2 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 1-√-3 | 1-√-3 | 1+√-3 | 1+√-3 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 6 | -2 | -2 | -2 | 2 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 1+√-3 | 1+√-3 | 1-√-3 | 1-√-3 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
Permutation representations of C3×C22⋊S4
►On 24 points - transitive group
24T700Generators in S
24
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 11)(2 12)(3 10)(4 24)(5 22)(6 23)(7 14)(8 15)(9 13)(16 21)(17 19)(18 20)
(1 18)(2 16)(3 17)(4 15)(5 13)(6 14)(7 23)(8 24)(9 22)(10 19)(11 20)(12 21)
(1 20)(2 21)(3 19)(4 15)(5 13)(6 14)(7 23)(8 24)(9 22)(10 17)(11 18)(12 16)
(1 18)(2 16)(3 17)(4 24)(5 22)(6 23)(7 14)(8 15)(9 13)(10 19)(11 20)(12 21)
(1 3 2)(4 22 14)(5 23 15)(6 24 13)(7 8 9)(10 21 18)(11 19 16)(12 20 17)
(1 7)(2 8)(3 9)(4 21)(5 19)(6 20)(10 22)(11 23)(12 24)(13 17)(14 18)(15 16)
G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,11)(2,12)(3,10)(4,24)(5,22)(6,23)(7,14)(8,15)(9,13)(16,21)(17,19)(18,20), (1,18)(2,16)(3,17)(4,15)(5,13)(6,14)(7,23)(8,24)(9,22)(10,19)(11,20)(12,21), (1,20)(2,21)(3,19)(4,15)(5,13)(6,14)(7,23)(8,24)(9,22)(10,17)(11,18)(12,16), (1,18)(2,16)(3,17)(4,24)(5,22)(6,23)(7,14)(8,15)(9,13)(10,19)(11,20)(12,21), (1,3,2)(4,22,14)(5,23,15)(6,24,13)(7,8,9)(10,21,18)(11,19,16)(12,20,17), (1,7)(2,8)(3,9)(4,21)(5,19)(6,20)(10,22)(11,23)(12,24)(13,17)(14,18)(15,16)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,11)(2,12)(3,10)(4,24)(5,22)(6,23)(7,14)(8,15)(9,13)(16,21)(17,19)(18,20), (1,18)(2,16)(3,17)(4,15)(5,13)(6,14)(7,23)(8,24)(9,22)(10,19)(11,20)(12,21), (1,20)(2,21)(3,19)(4,15)(5,13)(6,14)(7,23)(8,24)(9,22)(10,17)(11,18)(12,16), (1,18)(2,16)(3,17)(4,24)(5,22)(6,23)(7,14)(8,15)(9,13)(10,19)(11,20)(12,21), (1,3,2)(4,22,14)(5,23,15)(6,24,13)(7,8,9)(10,21,18)(11,19,16)(12,20,17), (1,7)(2,8)(3,9)(4,21)(5,19)(6,20)(10,22)(11,23)(12,24)(13,17)(14,18)(15,16) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,11),(2,12),(3,10),(4,24),(5,22),(6,23),(7,14),(8,15),(9,13),(16,21),(17,19),(18,20)], [(1,18),(2,16),(3,17),(4,15),(5,13),(6,14),(7,23),(8,24),(9,22),(10,19),(11,20),(12,21)], [(1,20),(2,21),(3,19),(4,15),(5,13),(6,14),(7,23),(8,24),(9,22),(10,17),(11,18),(12,16)], [(1,18),(2,16),(3,17),(4,24),(5,22),(6,23),(7,14),(8,15),(9,13),(10,19),(11,20),(12,21)], [(1,3,2),(4,22,14),(5,23,15),(6,24,13),(7,8,9),(10,21,18),(11,19,16),(12,20,17)], [(1,7),(2,8),(3,9),(4,21),(5,19),(6,20),(10,22),(11,23),(12,24),(13,17),(14,18),(15,16)]])
G:=TransitiveGroup(24,700);
►On 24 points - transitive group
24T701Generators in S
24
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 18)(2 16)(3 17)(4 20)(5 21)(6 19)(7 24)(8 22)(9 23)(10 15)(11 13)(12 14)
(1 15)(2 13)(3 14)(4 8)(5 9)(6 7)(10 18)(11 16)(12 17)(19 24)(20 22)(21 23)
(1 10)(2 11)(3 12)(4 8)(5 9)(6 7)(13 16)(14 17)(15 18)(19 24)(20 22)(21 23)
(1 15)(2 13)(3 14)(4 20)(5 21)(6 19)(7 24)(8 22)(9 23)(10 18)(11 16)(12 17)
(7 19 24)(8 20 22)(9 21 23)(10 15 18)(11 13 16)(12 14 17)
(1 4)(2 5)(3 6)(7 17)(8 18)(9 16)(10 22)(11 23)(12 24)(13 21)(14 19)(15 20)
G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,18)(2,16)(3,17)(4,20)(5,21)(6,19)(7,24)(8,22)(9,23)(10,15)(11,13)(12,14), (1,15)(2,13)(3,14)(4,8)(5,9)(6,7)(10,18)(11,16)(12,17)(19,24)(20,22)(21,23), (1,10)(2,11)(3,12)(4,8)(5,9)(6,7)(13,16)(14,17)(15,18)(19,24)(20,22)(21,23), (1,15)(2,13)(3,14)(4,20)(5,21)(6,19)(7,24)(8,22)(9,23)(10,18)(11,16)(12,17), (7,19,24)(8,20,22)(9,21,23)(10,15,18)(11,13,16)(12,14,17), (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,18)(2,16)(3,17)(4,20)(5,21)(6,19)(7,24)(8,22)(9,23)(10,15)(11,13)(12,14), (1,15)(2,13)(3,14)(4,8)(5,9)(6,7)(10,18)(11,16)(12,17)(19,24)(20,22)(21,23), (1,10)(2,11)(3,12)(4,8)(5,9)(6,7)(13,16)(14,17)(15,18)(19,24)(20,22)(21,23), (1,15)(2,13)(3,14)(4,20)(5,21)(6,19)(7,24)(8,22)(9,23)(10,18)(11,16)(12,17), (7,19,24)(8,20,22)(9,21,23)(10,15,18)(11,13,16)(12,14,17), (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,18),(2,16),(3,17),(4,20),(5,21),(6,19),(7,24),(8,22),(9,23),(10,15),(11,13),(12,14)], [(1,15),(2,13),(3,14),(4,8),(5,9),(6,7),(10,18),(11,16),(12,17),(19,24),(20,22),(21,23)], [(1,10),(2,11),(3,12),(4,8),(5,9),(6,7),(13,16),(14,17),(15,18),(19,24),(20,22),(21,23)], [(1,15),(2,13),(3,14),(4,20),(5,21),(6,19),(7,24),(8,22),(9,23),(10,18),(11,16),(12,17)], [(7,19,24),(8,20,22),(9,21,23),(10,15,18),(11,13,16),(12,14,17)], [(1,4),(2,5),(3,6),(7,17),(8,18),(9,16),(10,22),(11,23),(12,24),(13,21),(14,19),(15,20)]])
G:=TransitiveGroup(24,701);
Matrix representation of C3×C22⋊S4 ►in GL6(𝔽13)
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
,
0 | 1 | 12 | 0 | 0 | 0 |
1 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 12 | 12 | 12 |
0 | 0 | 0 | 1 | 0 | 0 |
,
0 | 12 | 1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 12 | 12 |
,
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 12 | 12 | 12 |
0 | 0 | 0 | 1 | 0 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
,
1 | 12 | 0 | 0 | 0 | 0 |
0 | 12 | 1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 12 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,1,12,0],[0,0,1,0,0,0,12,12,12,0,0,0,1,0,0,0,0,0,0,0,0,0,1,12,0,0,0,1,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,1,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,12,0,1,0,0,0,12,1,0],[1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,12,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C3×C22⋊S4 in GAP, Magma, Sage, TeX
C_3\times C_2^2\rtimes S_4
% in TeX
G:=Group("C3xC2^2:S4");
// GroupNames label
G:=SmallGroup(288,1035);
// by ID
G=gap.SmallGroup(288,1035);
# by ID
G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,254,1011,185,634,333,6053,1531,3534,608]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^3=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,f*c*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=g*b*g=c,c*d=d*c,c*e=e*c,g*c*g=b,f*d*f^-1=g*d*g=d*e=e*d,f*e*f^-1=d,e*g=g*e,g*f*g=f^-1>;
// generators/relations
Export
Character table of C3×C22⋊S4 in TeX